SICoTHEO —
Simple Competitive parallel Theorem Provers

based on SETHEO*

J. Schumann
Institut fur Informatik,
Technische Unwersitat Munchen
ematl: schumann@informatik.tu-muenchen.de

Abstract

In this paper, we present SiCoTHEQ, a zoo of parallel theorem provers for first
order predicate logic. They are based on the sequential prover SETHEQ. Parallelism
is exploited by competition: on each processor, an identical copy of SETHEO tries
to prove the entire formula. However, certain parameters which influence SETHEQ’s
behavior are set differently for each processor. As soon as one processor finds a
proof, the entire system is stopped. Three different versions of SiCoTHEQ are
presented in this paper. We have used competition on completeness mode (par-
allel iterative deepening, SiICoOTHEO-PID) and completeness bounds (parameterized
combination of completeness bounds, SiCOTHEO-CBC), and on the search mode
(top-down combined with bottom-up, SiCoTHEO-DELTA). The experimental re-
sults were obtained with a prototypical implementation, running on a network of
workstations. This parallel model is fault-tolerant and does not need communica-
tion during run-time (except start and stop message). We found that only little
efficiency is gained for SiCoOTHEO-PID, which reaches peak performance with only 4
processors. SiCoTHEO-CBC and SiCoTHEO-DELTA, however, showed significant
speed-up, and improved performance up to the 50 processors used.

1 Introduction

Automated theorem provers, like many other Al tools must explore large search spaces.
This leads to long (and often too long) run-times of such systems. One possibility to reduce
run-times is the exploitation of parallelism.

*This work is supported by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich
342, Subproject Ab: PARIS (Parallelization in Inference Systems).

Automated theorem proving in general seems to be suitable for parallelization, as many
implemented parallel theorem provers show (see [13] for an extensive survey).

Current trends lead away from special purpose, tightly coupled multiprocessor systems
(often with shared memory). Much more interesting (and feasible) seem to be networks of
workstations, connected by a local area network (e.g., Ethernet, ATM). Such a hardware
configuration is readily available in many places. It features processing nodes with high
processing power and (comparatively) large resources of local memory and disk space. The
operating system (mostly UNIX) allows multi-tasking and multi-user operation (which are
not necessarily available on a multiprocessor machine). The underlying communication
principle is message passing. Common data (e.g., the formula) can be kept in file-systems
which are shared between the processors (e.g., by NFS). However, the bandwidth of the
connection between the workstations is comparatively low and the latency for each com-
munication is rather high.

Models of parallelism which are ideally suited for such networks of workstations must
therefore obey the following requirements: small (or ideally no) necessary communication
between the processors and no dependency on short latencies and a high communication
bandwidth.

A parallel model which fulfills these requirements is competition: each processor tries to
solve the entire problem, using different methods or parameters. As soon as one processor
found a solution, the entire system can be stopped. In a competitive system there is no
need for communication except for the start and stop messages.

Competitive parallel models have been studied in various approaches (cf. [4] and [13]
for competitive parallel theorem provers). A competitive parallel theorem prover based on
the sequential prover SETHEO [8, 7] is RCTHEO (Random Competition) [3]. The (literal)
selection function for each processor is determined by a pseudo-random number generator
which is initialized with a different number on each processor. Therefore, when the system
has been started, the search-space is processed in a different way on each processor. A
detailed evaluation of the RCTHEO system is contained in [4].

In this paper, we will focus on models where competition is accomplished by a different
setting of parameters of the proof algorithm for each processor. This is in contrast to
RCTHEO which exploits parallelism by randomizing the proof algorithm. Also, we only
discuss systems, which are based on one sequential prover (homogeneous competition). In
an inhomogeneous system, different theorem provers (e.g., OTTER, METEOR, SETHEO,

..) could run compete for a proof.

This paper proceeds as follows: First, we will define competition between homogeneous
processes and discuss important properties of competitive theorem provers, such as effi-
ciency, scalability, soundness and completeness. We will also give the definitions of the
mean values for speed-up, which have been obtained in the experiments. After a short in-
troduction into the sequential theorem prover SETHEQO which is the basis for SiICoTHEOQ,
we will discuss which parameters are suitable for competition on parameter level. Then,
we will sketch the basics of the prototypical implementation of all SICOTHEOQO systems on
a network of workstations. Finally, we describe in detail the different SICOTHEO provers,
present results of experiments and assess them. We will conclude with an outlook on

possible applications for SiICoTHEO and future work.

2 Parallelism by Competition

Given a sequential theorem proving algorithm A(Py,...,P,) where P; are parameters
which may influence the behaviour of the system and its search (e.g., literal selection func-
tion or completeness modes). Then, a homogeneous competitive theorem prover running on
P processors is defined as follows: on each processor p (1 < p < P) a copy of the sequential
algorithm A(P7,...,PP) tries to prove the entire given formula. Some (or all) parameters
PP are set differently for each processor p. All processors start at the same time. As soon
as one processor could find a solution, this solution is reported to the user and the other
processors are stopped (“winner-takes-all strategy”).

The efficiency of the resulting competitive system strongly depends on the influence
the resp. parameter setting has on the run-time. The larger the difference of run-times,
which are created by different values of the parameters P?, the better the speed-up. If the
influence of the parameters on the search is only weak, all processes will have a run-time
which is quite similar. Then, the efficiency will be very low (the speed-up is about 1).

Good scalability and efficiency can be obtained only, if there are enough different values
for a parameter, and if no good estimation to set that parameter in an optimal way is
known. Only then, a large number of processors can be employed reasonably. A good
estimation for parameters will in general result in poor speed-up values for a competitive
system. Then, a different model of parallelisation will be appropriate. For a detailed
theoretical discussion see [4].

When we want to develop and evaluate competitive parallel theorem provers, we have
to address the following issues:

Soundness: although our parallel theorem provers are based on the sound sequential
1

prover SETHEQ, care must be taken that we obtain correct proofs in any case'.

Completeness: the entire system must be complete, i.e., if there exists a proof, at least
one processor should eventually find it. Since our system is intended to run on a
network of workstations (where processors or communication links may fail), the
competitive system should be complete even in cases with a reduced number of
processors (fault-tolerance). In a standard partitioning scheme, like OR-parallelism
(e.g., PARTHEO [11]), such a failure would lead to an incomplete system.

Efficiency: a central question regarding the use of parallel hardware is: is the result worth
the effort? l.e., can we obtain a reasonable speed-up s? FEfficiency n is defined as
n = s/ P where P is the number of processors.

!Consider the case where we run a SETHEQ without occurs-check in parallel with other provers. This
may easily lead to incorrect proofs.

Scalability: our parallel theorem prover should show a good scalability. Often, networks
contain hundreds of workstations which can (and should) be used reasonably. Fur-
thermore, the number of available processors may vary strongly from proof task to
proof task (e.g., due to system load or the activity of other users). Therefore, the
system should also be robust w.r.t. changes in the number of processors. This means

that 88—]7; should be smooth.

The run-times given in this paper are those of the SETHEO Abstract Machine, includ-
ing the time to load the compiled formula. All times are CPU-times and measured with
a granularity of 1/60 seconds. As the sequential run-time Ty, we always use SETHEO,
running with default parameters®. The run-time of the parallel system Tj is the time until
one of the processors has found a proof, 7)) = minp(TA(pf7...7p£)). The time needed to start
and stop the system is not considered here. For a discussion of these times, see [4] and
Section 4. All proof attempts (sequential and parallel) have been aborted after a maximal
run-time of 7},,,, = 300s. Hence, for all examples Ty, < 300s and 7)) < 300s. Given the
run-times, we define the speed-up s = Ty, /1)

It is rather difficult to give a good estimation of a mean value for the speed-up for a set
of examples, since in many cases the speed-up shows a high variance. Therefore, different
definitions of mean values result in extremely varying results. For a discussion of this topic
see e.g. [5]. For our measurements, we give four common mean values:

Sy = % >0 S (arithmetic mean)
Sg= /81 ... S, (geometric mean)
Sp = 2”71/5 (harmonic mean)

§0= 30 Toeg (1)) i Ty () (waiting times)

The arithmetic mean is often too optimistic, resulting in a mean value too large. The
harmonic mean gives rather low values, because examples with speed-up values near 1
are taken unproportionally high into account. Often, the geometric mean is considered
appropriate. §;, as defined in [1], relates the time needed to solve all problems (one after
the other) with one processor to the time needed with p processors. This measure is
especially useful for applications of the theorem prover, where one proof obligation after
the other is to be solved. For the calculation of $;, a time-limit 7},,, must be set.

Here, we will give values for all four mean values. Furthermore, we present a graphical
representation of the ration 7| over T, for each measurement; a representation which
allows to make reasonable estimations of the system’s behaviour even in cases of varying
speed-ups. In this representation, areas of super-linear speed-up and areas where s < 1
are marked.

2The default parameters of the SETHEO system are using all possible constraints (-cons), and per-
forming iterative deepening over the depth of the proof-tree (A-literal depth, -dr).

3 Parameter Competition for SETHEO

3.1 The Sequential Prover SETHEO
SETHEO is a theorem prover for First Order Predicate Logic based on the Model Elim-

ination Calaculus [9]. Given a set of clauses SETHEO tries to construct a closed Model
Elimination Tableau (a labelled tree) by performing extension and reduction steps. The
SETHEO Abstract Machine performs top-down search. Completeness is guaranteed by
limiting the number of inferences of the current tableau or its depth, and performing iter-
ative deepening.

Furthermore, SETHEO features a variety of efficient methods for pruning the search
space. For details about SETHEO see e.g. [8, 7, 6].

3.2 Parameters for Competition

The Model Elimination Calculus and SETHEQ’s proof procedure can be parameterized in
several ways. Table 1 shows a number of typical ways for modifying the basic algorithm.
For each parameter, common values are shown. Values which are default for SETHEO
are given in bold-face. Whereas some parameters can directly be given as command line
options, other parameters cause small modifications of the source code of SETHEO.

| parameter | values |
Clause selection function | as in formula/random/heuristically ordered
Literal selection function | as in formula/random /heuristically ordered
Search mode top-down/bottom-up/combination
addt’l inference rules - /fold-up /unit-lemmata
completeness modes iterative deepening/ other fair strategies
completeness bounds depth/#inferences/#copies/combinations
pruning methods constraints/-/

Table 1: Basic parameters for SETHEQ’s calculus and proof-procedure. Values shown in

bold-face are default values for SETHEO.

Regardless of the parameter setting, the proof procedure of SETHEOQO is always sound
and complete. This means for a competitive parallel theorem prover based on SETHEO
that soundness and completeness of the entire system is always ensured.

Given the parameters and their possible values from Table 1, a large variety of dif-
ferent parallel theorem provers based on competition can be designed. Combinations of
parameters furthermore increase this number.

In the following, we will focus on three parallel competitive systems, based on SETHEO.
Since they compete on rather simple settings of parameters, the system is called SiCoOTHEO
(Simple Competitive provers based on SETHEQO). The three systems compete via different

completeness modes (“parallel iterative deepening”, SICoOTHEO-PID), via a combination
of completeness bounds (SiCoOTHEO-CBC), and a combination of top-down and bottom-
up processing (SiICOTHEO-DELTA). Competition on selection functions has been imple-
mented in the parallel prover RCTHEO and has been explored in detail in [4]. Before we
go into details of each prover, we sketch the common prototypical implementation for all

SiCoTHEQ provers.

4 Prototypical Implementation

SiCoTHEO has been implemented in a prototypical way, using the same basic tools.
SiCoTHEO is running on a (possibly heterogenous) network of UNIX-workstations. The
control of the proving processes, the setting of the parameters and the final assembly of
the results is accomplished by the tool pmake [2]. This implementation of SICoTHEQO is a
further development of a prototypical implementation of RCTHEO.

Pmake is a parallel version of make, a software engineering tool used commonly to
generate and compile pieces of software given a number of source files, using a dependency
graph. Pmake exploits parallelism because it tries to export as many independent jobs as
possible to other processors. Hereby it assumes that all files are present on all processors
(e.g., via NFS).

Pmake stops, as soon as all jobs are finished or an error occurred. In our case, however,
we need a “winner takes all strategy” which stops the system, as soon as one job is
finished. This can be accomplished easily, using pmake’s default action in case an error is
encountered: an error causes pmake to abort the entire processing. Therefore, SETHEO
had to be adapted only in such a way that it returns an error value (i.e., a value # 0), if
it found a proof.

In contrast, the implementation of RCTHEO had to transfer the output generated
by all provers to the master processor. There, a separate process searched for a success
message. This resulted in heavy network traffic and long delays.

A critical issue in using pmake is its behaviour w.r.t. the load of workstations: as soon
as there is activity (e.g., keyboard entries) on workstations used by pmake, the current
job will be aborted (and restarted later). Therefore, the number of active processors (and
even the start-up times) can vary strongly during a run of SiICoTHEO.

5 Evaluation and Results

In this section we look in detail at the results, obtained with the three different versions of
SiCoTHEOQO. The experiments have been carried out on a network of HP-750 workstations,
connected via Ethernet. All formulae for the experiments have been taken from the TPTP-
problem library [12].

5.1 SiCoTHEO-PID

Parallel iterative deepening is one of the simplest forms of competition: each processor
explores the search space to a specific bound. For example, if we have the A-literal depth
as the bound, we might want to start processor number ¢ with depth bound 2. In order
to ensure completeness with a limited number of processors, we obtain a slightly different
scheme (for P processors):

for k=1,...,P in parallel do
for i1=0,... do
depth_bound = k + 1i%*P;
setheo (depth_bound)

Then, each processor ¢ explores the search space to a bound of 7,7+ P, + 2P,

Due to time and resource restrictions, results on SICOTHEO-PID have been obtained
by evaluating existing run-time data of SETHEO?. Figure 1 shows the resulting mean
values of the speed-up for different numbers of processors.

As can be seen immediatedly, the variance of the speed-up values is extremely high.
This fact results in a high arithmetic mean, whereas the s;, s, and s; are very close to 1.
This behaviour can also be seen in Figure 2 which shows the ratio of T} over T, for each
example, using 5 processors. The speed-up s is always > 1 since the entire search space
(which has to be searched in the sequential case) is partitioned. Nevertheless, the prover
on each processor is complete, because if there exists a proof with depth dg, the proof can
be found as well with a larger depth bound d > dj.

Furthermore, it is evident from Figure 1 that SiICoOTHEO-PID is not scalable. The
speed-up values reach a saturation level already with 4 processors. Adding more processors
does not increase the speed-up any more. This behaviour is obvious, since about two third
of the examples (67%) could be solved with a depth bound of 3 or 4. The number of
examples which need a higher depth (and thus can occupy more processors) is rather low,
as the histogram in Figure 3 shows.

Although in many cases, high speed-up values can be obtained, SiCoTHEO-PID should

be used in applications only where deep proofs are expected.

5.2 SiCoTHEO-CBC

The completeness bound which is used for iterative deepening determines the shape of the
search space and therefore has an extreme influence on the run-time the prover needs to
find a proof. There exist many examples, for which a proof cannot be found using iterative
deepening over the depth of the proof tree, whereas iterative deepening over the number

of inferences almost immediatedly reveals a proof, and vice versa®.

3The data have been obtained by running SETHEO (V3.0) on all examples of the TPTP [14] with
Timaz = 1000s. For our experiments, we have selected all examples which have a run-time 75., < 1000s on
a HP-750.

4This dramatic effect can be seen clearly in e.g. [8], Table 3.

Figure 1: SiCoTHEO-PID: mean speed-up values (x for s,, o for s,, e for s, ¢ for §;) for
different numbers of processors. The dotted line marks linear speed-up.

In order to level both extremes, R. Letz® proposed to combine the A-literal-depth
bound d with the inference bound . When iterating over depth d, the inference bound :
is set according to ¢ = f(d) for some function f. For our experiments, we use a quadratic
polynome:

i = ad® + Bd

where a, 8 € RS,

SiCoTHEO-CBC (Com Bine Completeness bounds) explores a set of parameters (a, 3)
in parallel by assigning different values to each processor. For the experiments we selected
0.l <a<land 0 < B < 1. In our first experiment we used 50 processors with the
following parameter setting:

p1:(0.1,0.0) (0.1,0.2) ... (0.1,0.8)
(0.2,0.0) (0.2,0.2) ... (0.2,0.8)
(10,0.0) (1.0,02) ... pso:(1.0,0.8)

Note, that this grid does not reflect the architecture of the system. It just represents a
two-dimensional arrangement of the parameter values.

For Exp. 2 and Exp. 3, the number of processors was reduced to 25 and 9 respectively
by equally thinning out the grid. For all experiments, a total of 99 different formulae from
the TPTP have been used. 48 examples show a sequential run-time Ty, of less than one

>Personal communication.
5For o« = 0,8 = 1 we yield inference-bounded search, o = oo, 3 = oo corresponds to depth-bounded
search.

700 -
600 - ,f""
500 -
400 - o
300 - .

200 - Ky

0 100 200 300 400 500 600 700
Tseq

Figure 2: SiCoTHEO-PID: parallel run-time 7}, over sequential run-time T, for P = 5.
The dotted line corresponds to s = 1, the solid line to s = P.

second CPU-time. 36 of the remaining examples have a run-time which is higher than 100
seconds. Although measurements have been made with all examples, we do not present
the results for those with run-times of less than one second. In that case, the resulting
speed-up (s, = 1.57 for P = 50) is by far outweighted by the time, SICOTHEO needs to
export proof tasks to other processors. In a real application, this could be reflected by
the following strategy: first, start one sequential prover with a time-limit of 1 second. If
a proof cannot be found within that time, SICOTHEO-CBC would start exporting proof
tasks to other processors.

Table 2 shows the mean values for all three experiments and different intervals of
sequential run-times. These figures can be interpreted more easily when looking at the
graphical representation of the ratio between Ti., and T, as shown in Figure 4. Each
dot represents one example. The area above the dotted line contains examples where
the parallel system is slower than the sequential prover, i.e., s < 1. The solid line has
a gradient of 1/P. All examples, located in the area below that line have a superlinear
speed-up s > P.

Figure 4 shows that even for a small number of processors a large number of examples
with super-linear speed-up exist. This encouraging fact is also reflected in Table 2 which
exhibits good average speed-up values even for P = 9. For the long-running examples and
P =9, s, is even larger than the number of processors. This means that in most cases, a

—
]
]
<o

100 4
number 3
of]
samples T
10 4
448%(19% [12% |10%
1 I I I I I I I I I I

depth

Figure 3: Number of examples with a proof found with A-literal depth d over the depth d.
Numbers are % of the total number of 858 samples.

super-linear speed-up can be accomplished.

Furthermore, SICoOTHEO-CBC seems to be comparatively scalable. Table 2 shows that
with an increasing number of processors, the speed-up values are also increasing. However,
this model has not been tested for larger networks of processors (and possibly different
ranges for a and 7).

seq. run-time [# samples] P=9 | P=25|P =50
ls < Ty < 10s][3] Sa 3.59 3.58 15.32
—7 Sy 2.00 2.00 3.77
—7 Sh 1.35 1.35 1.64
—— St 2.40 2.40 3.25
10s < Ty < 100s[12] Sa 37.89 39.33 51.81
—7 Sy 18.80 20.64 25.26
—7 Sh 5.65 7.43 7.68
—— St 4.81 6.80 7.00
100s < Tieq [36] Sq 65.40 74.52 | 110.10
—7 Sy 9.65 14.40 16.14
—7 Sh 2.86 3.56 3.72
—7 St 2.66 3.34 3.51

Table 2: SiCoTHEo-CBC: Mean values of speed-up for different numbers of processors P.

10

300 - 3 300 - . 300 - .
. 200 ..
L ST R
X
0 100 200 300 0 100 200 300 0 100 200 300
Tseq Tseq TS@‘J

Figure 4: Parallel run-time Tj over Sequential run-time Ty, for SiCoOTHEO-CBC and
different numbers of processors. The dotted line corresponds to s = 1, the solid line to

s = P.

5.3 SiCoTHEO-DELTA

The third competitive system which will be considered in this paper affects the search
mode of the prover. SETHEO normally performs a top-down search. Starting from a goal,
Model Elimination Extension and Reduction steps are performed, until all branches of the
tableau are closed. The DELTA iterator [10], on the other hand, generates small tableaux,
represented as unit clauses in a bottom-up way during a preprocessing phase. These unit
clauses are added to the original formula. Then, in the main proving phase, SETHEO
works in its usual top-down search mode. The generated unit clauses now can be used to
close open branches of the tableau, thus combining top-down with bottom-up processing.

The DELTA preprocessor has various parameters to control its operation. Here, we
focus on two parameters: the number of iteration levels [, and the maximal allowable
term depth t4. [determines how many iterations the preprocessor executes”. The number
of generated unit clauses increases monotonically with [. In order to avoid an excessive
generation of unit-clauses, the maximal depth of a term #; may be restricted. E.g., for the
term f(a,g(b)) we have t; = 3. Furthermore, DELTA is configured in such a way that a
maximal number of 100 unit clauses are generated. This avoids run-time errors during the
top-down phase when it is attempted to process excessively large formulae.

For our experiments, we use competition on the parameters [and t; of DELTA. Then, a
(possibly) different number of unit clauses are generated on each processor. The resulting
formula is then processed by SETHEOQ, using standard parameters®. Hence, execution time
in the parallel case consists of the time needed for the bottom-up iteration Tpg. s plus that
needed for the subsequent top-down search T};. As before, the overall execution times of
the abstract machine, including the time to load the formula is used.

“In case of Horn clauses, one iteration level corresponds to one step of UR-resolutions with the entire
formula.

8The default parameters for SETHEQ are used when the script setheo is invoked. Then, all constraints
(-cons) are used and iterative deepening over the depth of the proof-tree —dr is performed.

11

Our experiment has been carried out with 40 examples, 32 of which have T., > 100s.
[ranges from 1 to 5, ¢4 from 1 to 5, resulting in 25 different pairs of parameters. Figure 5
shows the ratio between Ty, and T for all examples. Again, we vary the number of
processors (4, 9, 25). Table 3 shows the numeric values for the obtained speed-up.

3007 e e B 300 . 300 - J
200 1 |
T||o'
1004 . .
. . N EE .
0 100 200 300 0 100 200 300 0 100 200 300
Tseq Tseq Tseq

Figure 5: Parallel run-time T over Sequential run-time T, for SiCOTHEO-TDBU and

different numbers of processors.

seq. run-time [# samples] P=4|P=9|P=25
Tseqy < Trnar [40] Sq 19.69 | 62.12 73.50
—— Sy 4.08 | 11.88 16.63
—— Sh 1.28 2.84 3.52
—— St 1.34 3.35 4.00

Table 3: Mean values of speed-up values for SICOTHEO-DELTA

The speed-up values obtained with SICOTHEO-DELTA are also very good. For P =4
and P = 9 the average speed-up s, is larger than P. This fact is supported by the large
number of examples which exhibit a super-linear speed-up as depicted in Figure 5.

However, there are several cases in which the parallel system is running slower than the
sequential one. The reason for this behaviour is that the additional unit-clauses increase
the search space. In cases, these clauses cannot be used for the proof, the run-time to find
a proof increases. In the case of P = 4 this can lead to the case that a proof cannot be
found at all within 7,,,,, = 300s, even if T}, < 300s. For a larger number of processors,
this effect does not occur for our examples. Here, there always exist a parameter setting
for DELTA which causes the overall run-time not to increase substantially.

12

6 Conclusions

In this paper, we have presented a parallel model based on the theorem prover SETHEO.
Parallelism is exploited by homogeneous competition. Each processor in the network is
running SETHEQO and tries to prove the entire formula. However, on each processor, a
different set of parameters influence the search of SETHEO. If this influence results in large
variations of the run-time, good speed-up values can be obtained. In this work, we had
a detailed look at three different systems based on this model: SICOTHEO-PID performs
parallel iterative deepening, SICOTHEO-CBC combines two different completeness bounds
using a parametrized function, and SICOTHEO-DELTA combines the traditional top-down
search of SETHEO with the bottom-up preprocessor DELTA. The parameters of DELTA
are the basis for competition.

Although the speed-up values of SICOTHEO-PID are always larger than one, only little
efficiency could be obtained by this prover. Furthermore, its peak performance is reached
with only 4 processors.

On the other hand, the parameterized combination of completeness bounds bear a
large potential for efficiency. Good efficiency is generally restricted to examples which
exhibit longer run-times (at least about 1s). Then, extremely good speed-up values could
be obtained, even with a low number of processors. Up to 50 processors, a reasonable
increase in performance could be observed. Further experiments have to reveal, how well
SiCoTHEO-CBC scales up to larger networks of processors.

SiCoTHEO-DELTA exhibits a similar and even slightly better behaviour concerning
the obtained speed-up values (3,, ;). The controlling parameters of DELTA are still rather
coarse. Therefore, many processors work on identical preprocessed formulae. The speed-
up could be even better, if one succeeds in producing a greater variety of preprocessed
formulae.

The implementation of SICoOTHEQ, using pmake combines simplicity and high flexibility
(w.r.t. the network and modifications) and with good performance. Future enhancements
of SiICoTHEOQO will certainly incorporate ways to control DELTA’s behaviour more subtly.
Furthermore, a combination of SICOTHEO-DELTA and SiCoTHEO-CBC will increase the
overall efficiency and scalability substantially. Finally, experiments with SiCoTHEO can
reveal, how to set the parameters of sequential SETHEO and DELTA in an optimal way.

References

[1] F. Buffoli, G. Degli Antoni, and A. Marchese. OR-Parallelism in Theorem Proving:
Speedups versus Timeout. Technical report, State University, Milano, 1994.

[2] A. de Boor. PMake — A Tutorial. Berkeley Softworks, Berkeley, CA, January 1989.

[3] W. Ertel. OR-Parallel Theorem Proving with Random Competition. In Proceedings
of LPAR’92, pages 226-237, St. Petersburg, Russia, 1992. Springer LNAT 624.

13

[4]

[11]

[12]

[13]

[14]

W. Ertel. Parallele Suche mit randomisiertem Wettbewerb in Inferenzsystemen. DISKT
25. Infix-Verlag, St. Augustin, 1993.

W. Ertel. On the Definition of Speedup. In PARLE, Parallel Architectures and
Languages Europe. LNCS, Springer Verlag, 1994.

C. Goller, R. Letz, K. Mayr, and J. Schumann. SETHEO V3.2: Recent Developments
(System Abstract) . In CADE 12, pages 778-782, June 1994.

R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into Con-
nection Tableau Calculi. Journal of Automated Reasoning, 13:297-337, 1994.

R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance
Theorem Prover. Journal of Automated Reasoning, 8:183-212, 1992.

D. W. Loveland. Automated Theorem Proving: a Logical Basts. North—Holland, 1978.

J. Schumann. DELTA — A Bottom-up Preprocessor for Top-Down Theorem Provers.
System Abstract. In CADE 12, Springer 1994.

J. Schumann and R. Letz. PARTHEO: a High Performance Parallel Theorem Prover.
In CADE 10, Springer 1990.

G. Sutcliffe, C.B. Suttner, and T. Yemenis. The TPTP Problem Library. In CADE 12,
Springer 1994.

C.B. Suttner and J. Schumann. Parallel Automated Theorem Proving. In Parallel
Processing for Artificial Intelligence. Elsevier, 1993.

C.B. Suttner. Static Partitioning with Slackness. DISKI. Infix-Verlag, to be published.

14

